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Introduction. Schwinger has used to powerful effect the fact that a formal replica
of the quantum theory is angular momentum is embedded within the quantum
theory of an isotropic 2-dimensional oscillator. I have recently been motivated
(by the use made by Penrose of ideas injected into angular momentum theory
by Majorana) to reexamine Schwinger’s work,1 and the present discussion is a
spin-off from that activity.

Oscillator theory provides a valuable laboratory in which to examine
(amongst much else) the relationship between the “standard” formulation of
quantum mechanics Feynman’s “sum-over-paths” formulation. That topic
assigns central importance to an identity

∞∑
n=0

1
n!

(
1
2τ

)n
Hn(x)Hn(y) = 1√

1− τ2
exp

{
2xyτ − (x2 + y2)τ2

1− τ2

}
(1.1)

which is encountered only occasionally in handbooks,2 with attribution to one
F. G. Mehler. . . concerning whom I have been able, with much searching, to
discover almost nothing.3 At that same formal interface the quantum theory

1 See “Comments concerning Julian Schwinger’s ‘On angular momentum,’ ”
(October ) and “Toy quantum field theory: populations of indistinguishable
finite-state systems,” (Physics Seminar Notes:  November ).

2 I quote above from page 194 in A. Erdélyi, Higher Transendental Functions,
Volume II ().

3 Ferdinand Gustav Mehler (–) pursued his obscure academic career
in Breslau, Berlin and Danzig. He was active mainly during the ’s and
’s, when his papers appeared with fair regularity in Crelle’s Journal and
Mathematische Annalen. “Mehler’s formula” made its first appearance on
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of a free particle is found to hinge on the innocent-looking identity

1√
2π

∫ +∞

−∞
e−

1
2 τp

2
eipxdp = 1√

τ
e−

1
2τ x2

(1.2)

while the problem of a constrained free particle (particle-in-a-box) leads to an
identity which looks less innocent

ϑ3(z, τ) =
√

i/τez
2/iπτ · ϑ3( zτ ,− 1

τ ) (1.3)

but concerning which Richard Bellman has this to say: “[the preceding] identity
has amazing ramifications in [many branches of pure/applied] mathematics; in
fact, it is not easy to find another identity of comparable significance.”4 I will, in
a moment, review how it comes about that the identities (1) acquire importance
in connection with the quantum mechanics of some commonly encountered and
closely related physical systems. But here I wish only to draw attention to the
fact that the identities (1) appear—if your squint—to be structurally similar in
this respect: each presents τ “upstairs on the left, downstairs on the right.” In
this regard (1) resembles a population of “transformation formulæ” encountered
at various points within the theory of higher functions—

F (a, b; c; z) = (1− z)−aF (a, c− b; c; z
z−1 )

provides an example, selected almost at random5—so the question arises: Does
there exist a sense in which all such statements are instances of the same
over-arching abstract statement? Can such statements be unified/generalized?

One “soft” generalization is much less problematic: each of the identities
(1) possesses a natural multivariate companion. In particular, Mehler’s identity
(1.1) possess a bivariate companion which stands central to the quantum theory
of the aforementioned isotropic 2-dimensional oscillator. And must, therefore,
lurk somewhere within the quantum theory of angular momentum. Where?

We have now before us a little tangle of interrelated issues. My objective
will be to sort them out.

(continued from the preceding page) p.174 of “Reihenentwicklungen nach Laplaceschen
Functionen hoher Ordnung,” J. reine angew. Math. (Crelle) 66, 161 (1866),
when the Hermite polynomials themselves were only two years old. Today
Mehler is best known for his contributions to the theory of Gaussian quadrature.
Some of his function-theoretic work seems to have been motivated by an interest
in electrodynamics.

4 A Brief Introduction to Theta Functions (), page 4.
5 See page 8 in W. Magnum & F. Oberhettinger, Formulas and Theorems for

the Functions of Mathematical Physics (); also §2.9 in Volume I of Erdélyi2

and §60:5 in J. Spanier & K. B. Oldham, An Atlas of Functions ().
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Green’s function of an unconstrained free particle. We have

H |ψ) = i�∂t|ψ) with H = 1
2m p2

giving
|ψ)t = U(t)|ψ)0 with U(t) = exp

{
− 1

2m p2 t
}

Therefore
(x|ψ)t =

∫
(x|U(t)|y)dy(y|ψ)0

which is usually written

ψ(x, t) =
∫

G(x, t; y, 0)ψ(y, 0)dy

The Green’s function can be developed

G(x, t; y, 0) =
∫

(x|U(t)|p)dp(p|y) =
∫

e−
i
�

1
2mp2t(x|p)dp(p|y) (2.1)

But p |p) = p|p) entails �

i ∂x(x|p) = p(x|p) which gives

(x|p) = 1√
h
e

i
�
px

These momentum eigenfunctions are normalized in the formal sense that∫
(p|x)dx(x|q) = δ(p− q)

and complete in the sense that (to say the same thing another way)

∫
(x|p)dp(p|y) = δ(x− y)

So we have

G(x, t; y, 0) =
√

m

iht
exp

{ i

�

m

2
(x− y)2

t

}
(2.2)

as a formal instance of (1.2). Mathematically, (2) is a manifestation simply of
the familiar fact that

thin/fat Gaussian −−−−−−−−−−−−−−−−−−→
Fourier transformation

fat/thin Gaussian

but from a physical point of view it is rather more interesting: quick calculation
establishes that G(x, t; y, 0) is a solution of the Schrödinger equation

{
− �

2

2m∂2
x − i�∂t

}
G(x, t; y, 0) = 0
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and that within the population of such solutions it is distinguished by the fact
—this follows most quickly from (2.1)—that initially

lim
t↓0

G(x, t; y, 0) = δ(x− y)

Moreover, (2.2) can be written

G(x, t; y, 0) =
√

i
h

∂2S
∂x∂y exp

{
i
�
S(x, t; y, 0)

}
(3)

S(x, t; y, 0) ≡ m

2
(x− y)2

t

where S(x, t; y, 0) is the dynamical action S =
∫ t

0
Ldτ associated with the free

particle trajectory

x(τ) = y +
x− y

t
τ : (x, t)←− (y, 0)

and, as such, constitues the “fundamental solution” of the Hamilton-Jacobi
equation

1
2mS2

x + St = 0

We touch here on ideas that lie close to the roots of the Feynman formalism.

Green’s function of a free particle constrained to move on a ring.6 The mass m
is constrained to move now on a circle of radius r. Accordingly: to the theory
just sketched we bring the “ring periodicity condition”

(x + 2πr|p) = (x|p) ∼ e
i
�
xp

and find that p has become discrete:

p 
−→ pn = n�/r : n = 0,±1,±2, . . .

This fact is more neatly formulated as a quantization of angular momentum7

) = rp 
−→ )n = n�

and entails quantization of energy:

E = 1
2mp2 = 1

2mr2 )
2 
−→ En =En2

E ≡ �
2

2mr2

6 For a more elaborate discussion of this topic see my feynman formalism
for polygonal domains (–), pages 227–231.

7 Notice that free motion on a “twice-around ring” would entail

(x + 4πr|p) = (x|p)

and give
)n = n · 1

2�
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In place of the
∫

at (2.1) we now encounter a
∑

: the normalized (angular)
momentum/energy eigenstates are

(x|pn) = 1√
2πr

ein(x/r)

so we have

G(x, t; y, 0) = 1
2πr

+∞∑
−∞

e−
i
�
En2tein(x−y)/r (4.1)

= 1
2πr

{
1 + 2

∞∑
1

e−
i
�
En2t cosn(ϕ− ϕ0)

}

with ϕ ≡ x/r, ϕ0 ≡ y/r. The theta function ϑ3(z, τ) is defined8

ϑ3(z, τ) = 1 + 2
∞∑
n=1

qn
2
cos 2nz with q ≡ eiπτ

=
+∞∑
−∞

ei (πτn
2−2nz)

and by appeal to “Jacobi’s theta transformation” (1.3) becomes

=
√

i/τ ez
2/iπτ

+∞∑
−∞

exp
{
− i

(πn2

τ
+

2nz
τ

)}

=
√

i
τ

+∞∑
−∞

exp
{
− iπ

τ

( z

π
+ n

)2}

In this notation the Green’s function becomes

G(x, t; y, 0) = 1
2πrϑ(ϕ−ϕ0

2 ,−E t
π�

)

= 1
2πr

√
π�

iEt

+∞∑
−∞

exp
{
iπ

π�

Et

(ϕ− ϕ0 + 2πn
2π

)2}

=
√

m
iht

+∞∑
−∞

exp
{ i

�

mr2

2t
(ϕ− ϕ0 + 2πn)2

}

=
√

m
iht

+∞∑
−∞

exp
{ i

�

m

2t
(x + n2πr − y)2

}
(4.2)

8 As the subscript suggests, ϑ3(z, τ) is the third member of a set (quartet)
of closely interrelated functions, introduced in  by the young C. G. Jacobi
(–) as aids to the development of what are now called “Jacobian elliptic
functions” (see Chapter 16 in Abramowitz & Stegun, Handbook of Mathematical
Functions ()). One should be aware that the definitions employed by
various authors differ in small details, one from another; I adhere here and
in “2-dimensional ‘particle-in-a-box’ problems in quantum mechanics” ()
to the conventions of Bellman and Abramowitz & Stegun.
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Notice now that on a ring (which is to say: on any closed circuit of length
a = 2πr) there are multiple paths x ←− y, and that they differ in length by
multiples of a. And that

Sn(x, t; y, 0) ≡ m

2t
(x + n2πr − y)2

= dynamical action of the path with winding number n

So, in an obvious shorthand, (4.2) becomes—compare (3)—

G(x, t; y, 0) =
∑
paths

√
i
h
∂2S[path]

∂x∂y exp
{

i
�
S[path]

}
(5)

and brings us yet closer to the essential spirit of the Feynman formalism.

The ring problem provides the simplest instance—and captures all the
essential analytical features—of a broad class of “particle-in-a-box” problems,
many of which I have discussed elsewhere,8 but it supplies no direct insight into
the origin of the “chaotic” features that lend interest to the much larger class
of “stadium” problems9. . . though from a physical point of view the two classes
of problems are hardly to be distinguished.

Green’s function of a simple oscillator. Both classically & quantum mechanically,
quadratic Hamiltonians

H(x, p) = ap2 + 2bpx + cx2

are distinguished from other, more general Hamiltonians by the fact that they
give rise to linear equations of motion, and by the many special features that
radiate from that circumstance. The free particle provides the simplest example.
Another is provided by the oscillator

H = 1
2m p2 + 1

2mω2 x2

= 1
2�ω

{
q2 + y2

}
= �ω

{
a+ a + 1

2 I
}

where
y ≡

√
mω2

�ω x and q ≡
√

1
m·�ω p

are dimensionless self-adjoint operators and where and the operators

a ≡ 1√
2

{
y + iq

}
; a+ ≡ 1√

2

{
y − iq

}
are not self-adjoint, and therefore do not represent “observables:” they are
the familiar step-down/up “ladder operators,” which were first introduced into

9 L. A. Buminovich (). See M. C. Gurzwiller, Chaos in Classical and
Quantum Physics (): Figures 35, 44 & 45 and accompanying text. See also
O. F. de Alcantara Bonfim, J. Florencio & F. C. Sá Barreto, “Chaotic dynamics
in billiards using Bohm’s quantum mechanics,” Phys. Rev. E 58, R2693 (1998).
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oscillator theory by Dirac10 and are encountered today in most elementary
texts.11 From

[
x , p

]
= i� I it follows that

[
y , q

]
= i I and

[
a , a+

]
= I (6)

The oscillator Green’s function can be described12

Gosc(x, t; y, 0) = (x|Uosc(t)|y)
Uosc(t) = e−iω(a+a+ 1

2 I) t

= e−i 1
2ωt · e−iω(a+a) t

Schwinger has shown that one can, with sufficient cleverness,13 use (6) to obtain

= e−i 1
2ωt ·

a
+

[
exp

{(
e−iωt − 1

)
a+a

}]
a

= e−i 1
2ωt ·

∑
n

e−inωt (a+)n√
n!
|0)(0| (a)n√

n!

=
∞∑
0

e−iω(n+ 1
2 ) t|n)(n| (7)

where a |0) = 0 and (0|0) = 1 and where

|n) ≡ 1√
n!

(a+)n|0)

Realize (6) by setting y 
→ y· and q 
→ −i ddy . Then

a 
→ 1√
2

(
y + d

dy

)
and a+ 
→ 1√

2

(
y − d

dy

)
and we have

(y|n) =
(
− 1√

2

)n 1√
n!

(
d
dy − y

)n(y|0)

=
(
− 1√

2

)n 1√
n!

e+ 1
2y

2( d
dy

)n
e−

1
2y

2
(y|0)

The condition a |0) = 0 has become
(
y + d

dy

)
(y|0) = 0 which gives

(y|0) = (complex constant) · e− 1
2y

2

10 Principles of Quantum Mechanics (2nd edition ), §34.
11 See, for example, David Griffiths’ Introduction to Quantum Mechanics

(), §2.3.1.
12 Be careful: y wears now two distinct hats.
13 For the full details see “An operator ordering technique with quantum

mechanical applications” in collected seminars –; also page 32 of
an essay already cited.1
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The normalization condition (since dx =
√

�

mω dy) requires that we set

∫
(0|y)dy(y|0) = |complex constant|2

√
π =

√
mω

�

which entails

(complex constant) =
(

2mω
h

)1
4 ei (arbitrary phase)

and (if we abandon the uninteresting phase factor) gives

(y|0) =
(

2mω
h

)1
4
(

1√
2

)n 1√
n!

e−
1
2y

2 · e+y2(− d
dy

)n
e−y2

But
Hn(y) ≡ e+y2(− d

dy

)n
e−y2

is precisely Rodrigues’ construction of the Hermite polynomials.14 Thus do we
recover this familiar description

ψn(x) =
(

2mω
h

)1
4 1√

2nn!
e−

1
2 (mω/�)x2

Hn

(√
mω

�
x
)

(8)

of the oscillator eigenfunctions, the orthonormality of which∫
ψm(x)ψn(x)dx = δmn

is most readily established by a generating function technique which I have
described elsewhere13 and will not repeat. Returning with this information to
(7) we have

Gosc(x, t; y, 0) =
∞∑
0

e−iω(n+ 1
2 ) t ψn(x)ψn(y) (9.1)

=
(

2mω
h

)1
2 e−

1
2 (mω/�)(x2+y2)e−i 1

2ωt

·
∞∑
0

1
n!

(
1
2e

−iωt
)n

Hn

(√
mω

�
x
)
Hn

(√
mω

�
y
)

Mehler’s formula (1.1) now supplies

=
(

2mω
h

)1
2 e−

1
2 (mω/�)(x2+y2)e−i 1

2ωt

· 1√
1− τ2

exp
{

mω
�

[2xyτ − (x2 + y2)τ2

1− τ2

]}

=
(

2mω
h

)1
2

√
τ

1− τ2
exp

{
mω

�

[
2xy

τ

1− τ2
− (x2 + y2)

(
1
2 +

τ2

1− τ2

)]}
14 See Spanier & Oldham,5 page 219.
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with τ = e−iωt. Straightforward simplifications give

Gosc(x, t; y, 0) =
√

mω
ih sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}
(9.2)

=
√

i
h
∂2Sosc
∂x∂y exp

{
i
�
Sosc(x, t; y, 0)

}
We note the persistence of (3/5), and verify by computation that Gosc(x, t; y, 0)
satisfies the Schrödinger equation{

− �
2

2m

(
∂
∂x

)2 + 1
2mω2x2 − i� ∂

∂t

}
G = 0

while Sosc(x, t; y, 0) satisfies the associated Hamilton-Jacobi equation
1

2m

(
∂S
∂x

)2 + 1
2mω2x2S + ∂S

∂t = 0

And, moreover, that Sosc(x, t; y, 0) is the dynamical action function for the
harmonic oscillator—the result of inserting the dynamical trajectory

x(τ) = y cosωτ − y cosωt− x

sinωt
sinωτ : (x, t)←− (y, 0)

into S =
∫ t

0

{
1
2mẋ2(τ) + 1

2mω2x2(τ)
}
dτ .15

An argument that proceeded directly (9.1) to (9.2) or vice versa—without
appeal to (1.1)—would amount, in effect, to a proof of Mehler’s formula. Such
an argument can, in fact, be constructed. The idea is to write

Gosc(x, t; y, 0) =
∫

(x|Uosc(t)|p)dp(p|y)

Then16 to use
[
x , p

]
= i� I to bring Uosc(t) = e−

i
�

{
1

2m p2+ 1
2mω2x2

}
t to xp-ordered

form

e−
i
�

{
1

2m p2+ 1
2mω2x2

}
t

=
x

[
U(x, p; t)

]
p

U(x, p; t) =
√

secωt · e− i
�

mω
2 tanωt·x2 · e− i

�
(1−secωt)·xp · e− i

�

1
2mω ·p2

Notice that ∫
(x|Uosc(t)|p)dp(p|y) =

∫
U(x, p; t)(x|p)dp(p|y)

=
1
h

∫
U(x, p; t)e

i
�
(x−y)pdp

Perform the (Gaussian) integral, and after simplifications recover (9.2).

15 See quantum mechanics (/), Chapter 1, pages 21–23 for the
details.

16 This the tricky part, but yields readily to an elegant technique devised by
N. H. McCoy (“Certain expansions in the algebra of quantum mechanics,” Proc.
Edinburgh Math. Soc. 2, 205 (1931)), reinvented by Schwinger and described
elsewhere by me in old notes13 that give also all the details absent from the
present discussion.
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Multivariate generalizations. I was motivated by the 2-dimensional subject
matter of some work already cited6 to develop a theory of “theta functions
of several variables.” According to Bellman,4 who devotes his final pages
to a sketch of this subject, it was pioneered in the ’s by E. Hecke and
C. L. Siegel, who drew their motivation from algebraic number theory. That
application is reflected in the name of the standard add-on package

<< NumberTheory<< NumberTheory<< NumberTheory ��SiegelThetaSiegelThetaSiegelTheta��

that provides Mathematica with capability in this area; the accompanying text
informs us that the multivariate function in question “was initially investigated
by Riemann and Weierstrass, and [that] further studies were done by Frobenius
and Poincaré.”17 In any event, I found the generalization process to be entirely
straightforward: one defines

ϑ3(zzz,M) ≡
∑
nnn

ei(πnnn·Mnnn−2nnn·zzz) (10)

and obtains this “generalized Jacobi transformation”

ϑ3(zzz,M) =

√
iN

det M
e−i 1

πnnn ·Wnnn · ϑ3(Wzzz,−W) (11)

Here M is an N ×N symmetric matrix with a positive-definite imaginary part,
W ≡ M –1, zzz is a complex N -vector, and nnn is a N -vector with integer elements
of either sign; the

∑
ranges over the entire lattice of such nnn -vectors. In the

case N = 1 we recover Jacobi’s (1.3).

The identity (11) was obtained8 as a corollary of the multivariate Gaussian
integral ∫

· · ·
∫ +∞

−∞
e−(yyy ·Ayyy+2bbb ·yyy)dy1dy2 · · · dyN =

√
πN

detA
e bbb ·A–1 bbb

which upon A 
→ 1
2 M, yyy 
→ ppp and bbb 
→ i 1

2xxx becomes the multivariate Fourier
transformation formula∫

· · ·
∫ +∞

−∞
eixxx·ppp e−

1
2ppp ·Mpppdp1dp2 · · · dpN =

√
(2π)N

detM
e−

1
2xxx·M

–1xxx (12)

and gives back (1.2) in the case N = 1. Equation (12) provides the point of
departure also for the following discussion of the multivariate generalization of
Mehler’s formula, which I have extracted from some old notes.18

17 Mathematica 3.0: Standard Add-on Packages (), p. 320.
18 In  I happened by accident upon a paper by one W. F. Kibble (“An

extension of a theorem of Mehler’s on Hermite polynomials,” Proc. Camb. Phil.
Soc. 41, 12 (1945)), an account of which can be found in transformational
physics & physical geometry (–), pp. 167–171. Kibble’s paper
derived from his dissertation (“Analytical properties of certain probability
distributions,” University of Edinburgh ()) and provides a valuable
bibliography, but he looks upon Mehler’s formula as having to do with properties
of multivariate normal distributions. Tom W. B. Kibble has informed me today
( November ) that W. F. Kibble was his father.



Multivariate generalizations 11

We begin with review of the proof of Mehler’s formula (which in its original
form is already bivariate). I sketched what is in effect one line of proof. Kibble
cites a paper by G. N. Watson19 that provides three alternative proofs, all
intended to be simpler than one provided by N. Wiener.20 Kibble finds it most
convenient, for his own clever purposes, to proceed this way:21 Suppose M is
of the design

M =
(

1 τ
τ 1

)
Then

W ≡M
–1 =

1
det M

(
1 −τ
−τ 1

)
with det M = 1− τ2

and (12) becomes

1√
1−τ2 e

− 1
2(1−τ2)

{
x2
1−2mx1x2+x2

2

}
= 1

2π

∫∫
ei(x1p1+x2p2)e−

1
2

{
p2
1+2τ p1p2+p2

2

}
dp1dp2

= 1
2π

∞∑
n=0

τn

n!

{∫
eix1p1(−ip1)

ne−
1
2p

2
1dp1

}{∫
eix2p2(−ip2)

ne−
1
2p

2
2dp2

}
(13)

It proves convenient at this point to adopt the “monic” definition of the Hermite
polynomials (which is the definition favored by Magnus & Oberhettinger):

Hen(x) ≡ e+ 1
2x

2(− d
dx

)n
e−

1
2x

2
= 1√

2n
Hn(x/

√
2)

Tricks spelled out on pages 59–68 of Chapter 2 in quantum mechanics15 then
supply the integral representations

Hen(x) = 1√
2π

∫
(x + ip)ne−

1
2p

2
dp = e

1
2x

2· 1√
2π

∫
e−ixp(ip)ne−

1
2p

2
dp

= e
1
2x

2· 1√
2π

∫
eixp(−ip)ne− 1

2p
2
dp

Returning with this information to (13) we have

1√
1−τ2 e

− 1
2(1−τ2)

{
x2
1−2τ x1x2+x2

2

}

= e−
1
2

{
x2
1+x2

2

}
·

∞∑
n=0

τn

n! Hen(x1)Hen(x2) (14)

19 “Notes on generating functions of polynomials: (2) Hermite polynomials,”
J. London Math. Soc. 7, 194 (1932). The companion paper is “Notes on
generating functions of polynomials: (1) Laguerre polynomials,” J. London
Math. Soc. 7, 187 (1932).

20 The Fourier Integral (), pp.57–62.
21 What follows does not much resemble Kibble’s own argument, which I have

radically recast.
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which is Mehler’s formula (1.1) in the form preferred by Kibble. Notice that at
m = 0 the preceding equation reduces to a triviality. Notice also that

∞∑
n=0

τn

n! Hen(x) = 1√
2π

∫ ∞∑
n=0

τn

n! (x + ip)ne−
1
2p

2
dp

= 1√
2π

∫
eτ(x+ip)e−

1
2p

2
dp

= exτ−
1
2 τ

2

produces the standard generating function of the (monic) Hermite polynomials.
Equivalently

e−
1
2 (x−τ)2 = e−

1
2x

2 ·
∞∑
n=0

τn

n! Hen(x)

It begins to become evident why Watson calls the expression on the left side of
(14) a “generating function.”

To illustrate Kibble’s method for treating cases N > 2 I look to the case
N = 4, since it is the case of special interest to me. Write

M =




1 τ12 τ13 τ14
τ21 1 τ23 τ24
τ31 τ32 1 τ34
τ41 τ42 τ43 1


 = I + T : τij = τji

Then (12) gives

√
1

detM
e−

1
2xxx·M

–1xxx =

√
1

(2π)4

∫∫∫∫
eixxx·ppp e−

1
2ppp ·( I+T)pppdp1dp2dp3dp4

=
∫∫∫∫

e−
1
2ppp ·Tppp

4∏
k=1

1√
2π

eixkpk− 1
2p

2
kdpk

But

( 1
2 ppp···Tppp)1 = τ12p1p2 + τ13p1p3 + τ14p1p4

+ τ23p2p3 + τ24p2p4

+ τ34p3p4

≡
∑
{ν}

C1
ν1ν2ν3ν4

p
ν1
1 p

ν2
2 p

ν3
3 p

ν4
4 : ν1 + ν2 + ν3 + ν4 = 2

( 1
2 ppp···Tppp)2 =

∑
{ν}

C2
ν1ν2ν3ν4

p
ν1
1 p

ν2
2 p

ν3
3 p

ν4
4 : ν1 + ν2 + ν3 + ν4 = 4

...
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so we have√
1

detM
e−

1
2xxx·M

–1xxx = e−
1
2 (x2

1+x2
2+x2

3+x2
4) (15)

·
∞∑
n=0

1
n!

∑
{ν}

Cn
ν1ν2ν3ν4

Heν1
(x1)Heν2

(x2)Heν3
(x3)Heν4

(x4)

which is Kibble’s final result. The expression on the left is made somewhat
awkward by the occurance of M –1, and the intricacy of the combinatorics
that enter into the design of the coefficients Cn

ν1ν2ν3ν4
, which are repositories

ultimately of information written into the design of T = ‖τij‖. I will consider
later what (15) has to say about the quantum mechanics of isotropic oscillators.

G. N. Watson19 has obtained Mehler’s formula as a corollary of a nameless
but analogous property of the associated Laguerre polynomials

Lα
n(x) ≡ 1

n!e
−xxα

(
d
dx

)n
exxn+α

He defines

φn(x) ≡
[

n!e−xxα

Γ (n + α + 1)

] 1
2

Lα
n(x) :

∫ ∞

0

φm(x)φn(x) dx = δmn

then writes

K(x, y, t) ≡
∞∑
n=0

tnφn(x)φn(y) (16.1)

and—following more or less in the footsteps of Wiegert (), Hille () and
Hardy ()—establishes that

K(x, y, t) =
t−

1
2α

1− t
exp

{
− 1

2 (x + y) 1+t
1−t

}
· Iα

(
2
√
xyt

1− t

)
(16.2)

Watson’s (16) appears as equation (15) in §19.12 of Chapter 19 “Generating
Functions” in A. Erdéyli, Higher Transcendental Functions: Volume 3 (),
where it is attributed to Hille/Hardy, with reference also to Myller-Lebedeff,
Math. Ann. 64, 388 (1907). I was led to Erdélyi by Gradshteyn & Ryzhik,
who at 8.976.1 present this variant of (16):

n∑
n=0

tnn!
Lα
n(x)Lα

n(y)
Γ (n + α + 1)

=
(xyt)−

1
2α

1− t
exp

{
− t

x + y

1− t

}
· Iα

(
2
√
xyt

1− t

)

Watson uses
He2n(x) = (−)n22nn!L− 1

2
n (x2)

He2n+1(x) = (−)n22n+1n!xL+ 1
2

n (x2)
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and

I+ 1
2
(x) =

√
2x
π

sinhx

x

I− 1
2
(x) =

√
2x
π

coshx

x

to extract (14) from (16). Watson remarks that “this proof of Mehler’s formula
can be regarded as elementary,” but Kibble’s argument seems to me to be much
more direct and transparent (also more readily generalized). The point to be
remarked is that Mehler’s formula is not an isolated result, but (on evidence
especially of Erdélyi’s Chapter 19) one of a sizeable population of such formulæ,
distinguished by its relative simplicity.

Kibble-Mehler and the isotropic oscillator. The elementary facts are these: the
Schrödinger equation, in Cartesian coordinates, reads{

− �
2

2m∇
2 + 1

2mω2(x2
1 + x2

2)
}
ψ(x1, x2) = E ψ(x1, x2)

Separation is complete, and leads to eigenfunctions of the form

ψ(x1, x2) = ψn1
(x1) · ψn2

(x2)

where ψn(x) is given by (8). The associated eigenvalue is

En1,n2
= �ω(n1 + n2 + 1)

and is (n1 + n2 + 1)-fold degenerate: write

n1 = ν

n2 = n− ν

Eν,n−ν = �ω(n + 1) ≡ En

with ν = 0, 1, . . . , n and n = 0, 1, 2, . . .. We expect to have

G(x1, x2, t; y1, y2, 0)

=
∞∑
n=0

e−iω(n+1) t
n∑

ν=0

ψν(x1)ψn−ν(x2)ψν(y1)ψn−ν(y2)

=
(

2mω
h

)
e−

1
2 (mω/�)(x2

1+x2
2+y2

1+y2
2)

∞∑
n=0

e−iω(n+1) t
n∑

ν=0

1
ν!(n−ν)!

· 1√
2ν

Hν

(√
mω

�
x1

)
1√
2ν

Hν

(√
mω

�
y1

)
· 1√

2n−ν
Hn−ν

(√
mω

�
x2

)
1√

2n−ν
Hn−ν

(√
mω

�
y2

)
which can be written

G =
(

2mω
h

)
e−

1
4 (x2

1+y2
1+x2

2+y2
2)

∞∑
n=0

(
e−i θ

)n+1 (17.1)

·
n∑

ν=0

1
ν!(n−ν)!Heν(x1)Heν(y1)Hen−ν(x2)Hen−ν(y2)
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with x ≡
√

2mω
�

x, y ≡
√

2mω
�

y and θ ≡ ωt. On the other hand, we are led by
our experience at (3/5/9) to anticipate

G(x1, x2, t; y1, y2, 0) = (factor) · e i
�
S(x1,x2,t ;y1,y2,0) (17.21)

with (as we readily convince ourselves)

1
�
S(x1, x2, t ; y1, y2, 0) = mω

2� sinωt

{[
(x2

1 + y2
1) cosωt− 2x1y1

]
+

[
(x2

2 + y2
2) cosωt− 2x2y2

]}
= 1

4 sin θ

{[
(x2

1 + y2
1) cos θ − 2x1y1

]
(17.22)

+
[
(x2

2 + y2
2) cos θ − 2x2y2

]}
What does the Kibble-Mehler formula (15) have to say about the relationship
between (17.1) and (17.2)? The formula is made a little difficult to apply in
specific instances by the occurrance of M –1 on the left, and the complexity of
the coefficients Cn

ν1ν2ν3ν4
on the right. So we squint/guess/tinker. . . and are soon

develop interest in the case

M = I + T =




1 τ 0 0
τ 1 0 0
0 0 1 τ
0 0 τ 1




Then
det M = (1− τ2)2

M
–1 = (1− τ2)–1




1 −τ 0 0
−τ 1 0 0
0 0 1 −τ
0 0 −τ 1




Write

xxx =




x1

y1

x2

y2


 and ppp =




p1

q1
p2

q2




and obtain
( 1
2 ppp···Tppp)n = τn(x1y1 + x2y2)

n

= τn
n∑

ν=0

n!
ν!(n−ν)!x

ν
1y

ν
1x

n−ν
2 yn−ν

2

These notations place us in position to write

LHS of (15) = 1
1−τ2 exp

{
− 1

2(1−τ2)

[(
x2

1 + y2
1 − 2τx1y1

)
+

(
x2

2 + y2
2 − 2τx2y2

)]}

RHS of (15) = e−
1
2 (x2

1+y2
1+x2

2+y2
2)

·
∞∑
n=0

τn

n!

n∑
ν=0

n!
ν!(n−ν)!Heν(x1)Heν(y1)Hen−ν(x2)Hen−ν(y2)
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Multiply each of the preceding expressions by
(

2mω
h

)
τe+ 1

4 (x2
1+y2

1+x2
2+y2

2) and
set τ 
→ e−i θ. The latter expression then reproduces (17.1) while the former
expression becomes

(
2mω
h

)
τ

1−τ2 exp
{
− 1

4
1+τ2

1−τ2

(
x2

1 + y2
1 + x2

2 + y2
2

)
+ τ

1−τ2

(
x1y1 + x2y2

)}

But 1+τ2

1−τ2 = −i cos θ
sin θ and τ

1−τ2 = −i 1
2

1
sin θ so we have

(
mω

ih sin θ

)
exp

{
i 1
4 sin θ

[(
x2

1 + y2
1 + x2

2 + y2
2

)
cos θ − 2

(
x1y1 + x2y2

)]}

This result conforms precisely to (17.2); it places us, moreover, in position to
observe that

(factor) = mω
ih sinωt

and that this result, in conformity with a principle fundamental to the Feynman
formalism,22 can be expressed (compare (3/5))

=

√(
i

2π�

)2 det
(

∂2S/∂x1∂y1 ∂2S/∂x1∂y2

∂2S/∂x2∂y1 ∂2S/∂x2∂y2

)

=
√(

i
2π�

)2[−(
− mω

sinωt

)2 ]

The results developed above are in no respect surprising, but that hardly
diminishes their charm or importance, and it is gratifying to discover that the
details are manageable, and that they work out “just so.” I remark once again
that the time variable t lives upstairs in (17.1), but downstairs in (17.2).

Symmetries of the action for an isotropic oscillator. At (17.2) we obtained

S(x1, x2, t ; y1, y2, 0) = mω
2 sinωt

{
(x2

1 + y2
1 + x2

2 + y2
2) cosωt− 2(x1y1 + x2y2)

}

which can be written

= mω
2 sinωt

{
(ξξξ ···I ξξξ ) cosωt− 2(ξξξ ···J ξξξ )

}
(18)

with

ξξξ ≡




x1

y1

x2

y2


 , I ≡




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , J ≡




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 (19)

. . . in which connection we notice that I –1 = I, J –1 = J. It is obvious from (18)

22 See quantum mechanics (), Chapter 1, page 50.



Symmetries of the action for an isotropic oscillator 17

that S(x1, x2, t ; y1, y2, 0) is invariant under ξξξ 
−→ ξξξ : ξξξ = R ξξξ provided is is
simultaneously true of R that

R
T
I R = I and R

T
J R = J (20)

i.e., that
I

–1
R

T
I = R

–1 and J
–1

R
T
J = R

–1

Write R = eL. The requirement then is that

I
–1

L
T
I = −L and J

–1
L

T
J = −A

which is readily seen to entail that L be antisymmetric, but of the specialized
form

L =




0 0 α β
0 0 β α
−α −β 0 0
−β −α 0 0


 ≡ αA + βB (21)

The matrices

A =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 and B =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




commute
AB = BA

and satisfy
A

2 = B
2 = −I

so we have

R = eαA+βB = eαA eβB

=
{
cosα · I + sinα · A

}{
cosβ · I + sinβ · B

}
(22)

Evidently we confront two independent copies of O(2) embedded with O(4).
Working from (22) we have

R = cosα cosβ · I + sinα cosβ · A + cosα sinβ · B + sinα sinβ · C

with

C ≡ AB = −




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 = −J

which is not antisymmetric, not itself the generator of a symmetry of the action
function. . . though from an algebraic point of view it is a very close relative of
A and B :

AB = BA = +C

BC = CB = −A

CA = AC = −B


 (23)
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I find this result to be disappointing, if not perplexing: I had hoped that I
would encounter O(3)—the “hidden symmetry” of the isotropic oscillator, but
that prize is not so easily won.

The O(3)-symmetry of the isotropic oscillator lives in phase space. I look
now, therefore, for bridges that will take me from (x1, y1, x2, y2)-space—locus
of the preceding discussion—to (x1, p1, x2, p2)-space.

Translocation to phase space. By way of orientation,look to the fundamental
2-point action function of a free particle:

S(x, t; y, 0) = m
2t (x− y)2

Therefore

p = ∂S
∂x

= m
t (x− y) =⇒ y = y(x, p; t) ≡ x− 1

mp t

and
S(x, t; y(x, p; t)) ≡ S(x, p; t) = 1

2mp2 · t
The result is more interesting than “corrupted Legendre transformation” that
gave it.

For an oscillator we have

S(x, t; y, 0) = mω
2 sinωt

{
(x2 + y2) cosωt− 2xy

}
p = ∂S

∂x
= mω

x cosωt− y

sinωt
=⇒ y = x cosωt− 1

mωp sinωt

S(x, p; t) = 1
2mω p2 cosωt sinωt + px sin2 ωt− mω

2 x2 cosωt sinωt

which give back free particle results in the limit ω ↓ 0, while expansion in powers
of t gives

S(x, p; t) =
{

1
2mp2 + 1

2mω2x2
}
· t + · · ·

For an isotropic oscillator

S(x1, p1, x2, p2; t) =
{

1
2m (p2

1 + p2
2) + 1

2mω2(x2
1 + x2

2)
}
· t + · · ·

and in general we can expect to have

S(ppp,xxx; t) = H(ppp,xxx) · t + · · · (24)

We are led thus to the curious observation that (for time-independent systems)

lim
t↓0

∂S(ppp,xxx; t)
∂t

= H(ppp,xxx) is a constant of the motion

though the same cannot be said of S itself (or, generally, of its t -derivatives of
ascending order).
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To extract the motion from S(x, y; t) one proceeds not by the crooked
construction S −→ S but in the manner standard to the text books; i.e., by
treating S(x, y; t) as the Legendre generator of a canonical transformation.23

Write
evolved momentum p = +∂S

∂x
= +mω

x cosωt− y

sinωt

initial momentum q = −∂S
∂y

= −mω
y cosωt− x

sinωt


 (25)

Solve the latter for x

x = y cosωt + 1
mωq sinωt : x(0) = y

and insert the result into the former:

p = q cosωt−mωy sinωt : p(0) = q

= mẋ

One then verifies that

1
2mp2 + 1

2mω2x2 = 1
2mq2 + 1

2mω2y2

I have entrusted all the calculation to Mathematica, but the results are entirely
elementary.

But close by hover some facts/questions/issues—general issues, though I
discuss them as they occur in a specific instance (isotropic oscillator)—that,
if also “elementary,” are less frequently considered, less broadly understood.
Consider the following scheme:

H(p, x) ←−−−−−−−−−−−−−−−−−−−→
t-parameterized “motion”

S(x, y ; t)∣∣∣∣∣[H,A]=0

A(p, x) ←−−−−−−−−−−−−−−−−−−−→
u-parameterized canonical

F (x, y ;u)

The Hamiltonian H(p, x) is the Lie generator of the t-parameterized canonical
transformation we call “motion,” and S(x, y ; t) is—as demonstrated above—
the Legendre generator of that same transformation: the relationship between
the two is provided by the Hamilton-Jacobi equation H(Sx, x) + St = 0. From[
H,A

]
= 0 we learn that A(p, x) is a constant of the motion—the Lie generator

of a u-parameterized family of canonical transformations that map

dynamical orbits 
−→ dynamical orbits (26)

and of which F (x, y ; t) is the Legendre generator: A(Fx, x) + Fu = 0. The
questions of interest to me: What does F (x, y ; t) look like in some representative
concrete cases? What statement relating F to S echos the condition

[
H,A

]
= 0?

23 See, for example, H. Goldstein, Classical Mechanics (2nd edition ),
equations (9–14).
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For an isotropic oscillator we have

H = 1
2m (p2

1 + p2
2) + 1

2mω2(x2
1 + x2

2) (27.1)

and in connection with that physical system have an acquired24 interest in

A1 ≡ 1
m p1p2 + mω2x1x2

A2 ≡ ω(x1p2 − x2p1)

A3 ≡ 1
2m (p2

1 − p2
2) + 1

2mω2(x2
1 − x2

2)


 (27.2)

which are readily shown to possess these properties:

A2
1 + A2

2 + A2
3 = H2 (28.1)

[
H,A1

]
=

[
H,A2

]
=

[
H,A3

]
= 0 : each is a constant of the motion (28.2)[

A1, A2

]
= 2ωA3[

A2, A3

]
= 2ωA1[

A3, A1

]
= 2ωA2


 ∴ LLL ≡ 1

2ωAAA mimics “angular momentum” (28.3)

Each A-observable is dimensionally an “energy,” so LLL even mimics the physical
dimensionality of angular momentum. This, of course, is the point at which
O(3) is standardly considered to sneak into the physics of isotropic oscillators.

Look upon A1(x1, x2, p1, p2) as a “Hamiltonian.” The “canonical equations
of motion” read

d
dux1 = + 1

mp2

d
dup1 = −mω2x2

d
dux2 = + 1

mp1

d
dup2 = −mω2x1




=⇒




(
d2

du2 + ω2
)
x1 = 0(

d2

du2 + ω2
)
p1 = 0(

d2

du2 + ω2
)
x2 = 0(

d2

du2 + ω2
)
p2 = 0

(29.1)

Solutions are of the familiar form15

x(τ) = y cosωτ + 1
mω q sinωτ

= y cosωτ − y cosωu− x

sinωu
sinωτ : (x, u)←− (y, 0)

The equivalent “Lagrangian” is

B1(x1, x2, ẋ1, ẋ2) = ẋ1p1 + ẋ2p2 −A1(x1, x2, p1, p2)
= m

{
ẋ1ẋ2 − ω2x1x2

}
(29.2)

24 See (6) in “Comments . . . ‘On angular momentum,’ ” (October ).
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and leads us to

F1(x1, x2, u ; y1, y2, 0) =
∫ u

0

B1(x1, x2, ẋ1, ẋ2)du

= mω
(x1x2 + y1y2) cosωu− (x1y2 + x2y1)

sinωu
(29.3)

Calculation confirms that F1 is in fact a solution of

1
m

∂F
∂x1

∂F
∂x2

+ mω2x1x2 + ∂F
∂u = 0 (29.4)

Look next/similarly upon A2(x1, x2, p1, p2) as a “Hamiltonian.” The
“canonical equations of motion” read

d
dux1 = −ωx2

d
dup1 = −ωp2

d
dux2 = +ωx1

d
dup2 = +ωp1




=⇒




(
d2

du2 + ω2
)
x1 = 0(

d2

du2 + ω2
)
p1 = 0(

d2

du2 + ω2
)
x2 = 0(

d2

du2 + ω2
)
p2 = 0

(30.1)

Solutions are obviously (remarkably?) the same as before. But, because of the
bilinear design of A2(x1, x2, p1, p2), equations of the form

p1 = p1(x1, x2, ẋ1, ẋ2)
p1 = p2(x1, x2, ẋ1, ẋ2)

}
are impossible in this case

so it is impossible to execute the Legendre transformation that would lead via

B2(x1, x2, ẋ1, ẋ2) = ẋ1p1 + ẋ2p2 −A2(x1, x2, p1, p2)

to an equivalent “Lagrangian,” and impossible therefore to lend meaning to the
construction

F2(x1, x2, u ; y1, y2, 0) =
∫ u

0

B2(x1, x2, ẋ1, ẋ2)du

Look finally/similarly upon A3(x1, x2, p1, p2) as a “Hamiltonian.” The
“canonical equations of motion” read

d
dux1 = + 1

mp1

d
dup1 = −mω2x1

d
dux2 = − 1

mp2

d
dup2 = +mω2x2




=⇒




(
d2

du2 + ω2
)
x1 = 0(

d2

du2 + ω2
)
p1 = 0(

d2

du2 + ω2
)
x2 = 0(

d2

du2 + ω2
)
p2 = 0

(31.1)

Solutions are once again the same as before. The equivalent “Lagrangian” is

B3(x1, x2, ẋ1, ẋ2) = ẋ1p1 + ẋ2p2 −A3(x1, x2, p1, p2)
= 1

2m(ẋ2
1 − ẋ2

2) + 1
2mω2(x2

1 − x2
2) (31.2)
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so we have (compare (17.2))

F3(x1, x2, u ; y1, y2, 0) =
∫ u

0

B3(x1, x2, ẋ1, ẋ2)du

= 1
2mω

(x2
1 + y2

1 − x2
2 − y2

2) cosωu− 2(x1y1 − x2y2)
sinωu

(31.3)

Calculation confirms that F3 is in fact a solution of

1
2m

[(
∂F
∂x1

)2 −
(
∂F
∂x2

)2
]

+ 1
2mω2(x2

1 − x2
2) + ∂F

∂u = 0 (31.4)

Preceding results are responsive to the first of the questions posed at the
bottom of page 19, but to the second question—“What statement relating F to
S echos the condition

[
H,A

]
= 0?”—they serve only to supply evidence that

the answer is “not obvious.”

Composed Legendre transformations. The issue before us is perhaps most
readily grasped when viewed in relation to its quantum mechanical counterpart:
write

orbit : |ψ)0 −→ |ψ)t = U(t)|ψ)0 with U(t) = e−
i
�

Ht

transformed orbit : |ψ)t −→ |ψ)u,t = V(u)|ψ)t with V(u) = e−
i
�

Au

The condition that a transformed orbit be itself an orbit (orbit of the transform)
can be expressed

V(u)U(t)|ψ)0 = U(t)V(u)|ψ)0 (32.1)

which if valid for
• all |ψ)0
• all u
• all t

entails
[
H , A

]
= 0 . A more “Noetherean” formulation of the same idea is[

A , U(t)
]

= 0

Pass to the x-representation and obtain statements of the form∫
(x|V(u)|z)dz(z|U(t)|y) =

∫
(x|U(t)|z)dz(z|V(u)|y) (32.2)∫

(x|A |z)dz(z|U(t)|y) =
∫

(x|U(t)|z)dz(z|A |y)

which acquire special interest from the circumstance that

(x|U(t)|y) = Green’s function ∼ e
i
�
(action function)

At (32) we composed transformations that are canonical in the unitary sense
of quantum mechanics. We look now to the classical analog/precursor of that
process, as it presents itself in a specific instance (isotropic oscillator).
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We have already examined the Legendre transform mechanism by which

S(x1, x2, t; y1, y2, 0) = 1
2mω

(x2
1 + y2

1 + x2
2 + y2

2) cosωt− 2(x1y1 + x2y2)
sinωt

generates




y1

q1
y2

q2


 −−−−−−−−−−−−−−→

S-generated motion




x1 = y1 cosωt + 1
mωq1 sinωt ≡ Sy1

p1 = q1 cosωt−mωy1 sinωt ≡ Sq1
x2 = y2 cosωt + 1

mωq2 sinωt ≡ Sy2

p2 = q2 cosωt−mωy2 sinωt ≡ Sq2




and by that same mechanism (I omit the details) we obtain




y1

q1
y2

q2


 −−−−−−−−−−−−−−→

F1-generated map




x1 = y1 cosωu + 1
mωq2 sinωu ≡ F1y1

p1 = q1 cosωu−mωy2 sinωu ≡ F1q1
x2 = y2 cosωu + 1

mωq1 sinωu ≡ F1y2

p2 = q2 cosωu−mωy1 sinωu ≡ F1q2


 (33.1)

From the latter it follows, by the way, that for infinitesimal u we in leading
order have 


x1 = y1 + 1

mq2 · δu
p1 = q1 −mω2y2 · δu
x2 = y2 + 1

mq1 · δu
p2 = q2 −mω2y1 · δu




which by

[
F1, •

]
= − 1

mp2
∂
∂x1

+ mω2x2
∂
∂p1
− 1

mp1
∂
∂x2

+ mω2x1
∂
∂p2

(33.2)

can be written




x1

p1

x2

p2


− [

F1,




x1

p1

x2

p2


 ]
· δu + · · ·

∣∣∣∣∣∣∣
x→y,p→q

Now to the point of this discussion: Entrusting the computational labor to
Mathematica, we find

Fy1(Sy1, Sq1, Sy2, Sq2) = Sy1(Fy1, F q1, Fy2, F q2)
Fq1(Sy1, Sq1, Sy2, Sq2) = Sq1(Fy1, F q1, Fy2, F q2)
Fy2(Sy1, Sq1, Sy2, Sq2) = Sy2(Fy1, F q1, Fy2, F q2)
Fq2(Sy1, Sq1, Sy2, Sq2) = Sq2(Fy1, F q1, Fy2, F q2)




(33.3)

where I have dropped the subscripts 1 from all the F ’s. This result expresses
the commutivity of the S-map and the F1-map: the results are the same when
they are performed in either order. Specificially we have
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x1(t, u) =
cosωt

{
mωy1 cosωu + q2 sinωu

}
+ sinωt

{
q1 cosωu−mωy2 sinωu

}
mω

p1(t, u) = cosωt
{
q1 cosωu−mωy2 sinωu

}
− sinωt

{
mωy1 cosωu + q2 sinωu

}
x2(t, u) =

cosωt
{
mωy2 cosωu + q1 sinωu

}
+ sinωt

{
q2 cosωu−mωy1 sinωu

}
mω

p2(t, u) = cosωt
{
q2 cosωu−mωy1 sinωu

}
− sinωt

{
mωy2 cosωu + q1 sinωu

}
from which results appropriate to u 
→ δu are readily extracted.

Working similarly (see again (27.2)) from A3—which is to say: from the
F3(x1, x2, u ; y1, y2, 0) of (31.3)—we obtain

x1 =
mωy1 cosωu + q1 sinωu

mω

p1 = q1 cosωu−mωy1 sinωu

x2 =
mωy2 cosωu− q2 sinωu

mω

p2 = q2 cosωu + mωy2 sinωu

Composition with the transformation generated by S is again found to be
commutative, and produces

x1(t, u) = y1 cosω(t + u) + 1
mωq1 sinω(t + u)

p1(t, u) = q1 cosω(t + u)−mω y1 sinω(t + u)
x2(t, u) = y2 cosω(t− u) + 1

mωq2 sinω(t− u)
p2(t, u) = q2 cosω(t− u)−mω y2 sinω(t− u)

Look finally to A2. No F2(x1, x2, u ; y1, y2, 0) exists, but nothing prevents
direct solution of the “canonical equations” (30.1); Mathematica supplies

x1 = y1 cosωu− y2 sinωu

p1 = q1 cosωu− q2 sinωu

x2 = y2 cosωu + y1 sinωu

p2 = q2 cosωu + q1 sinωu

Composition with the transformation generated by S is once again found to be
commutative, and produces

x1(t, u) = cosωt
{
y1 cosωu− y2 sinωu

}
+ sinωt

q1 cosωu− q2 sinωu

mω

p1(t, u) = cosωt
{
q1 cosωu− q2 sinωu

}
−mω sinωt

{
y1 cosωu− y2 sinωu

}
x2(t, u) = cosωt

{
y2 cosωu + y1 sinωu

}
+ sinωt

q2 cosωu + q1 sinωu

mω

p2(t, u) = cosωt
{
q2 cosωu + q1 sinωu

}
−mω sinωt

{
y2 cosωu + y1 sinωu

}
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In each of the preceding cases we recover S-generated motion

x1 = y1 cosωt + 1
mωq1 sinωt

p1 = q1 cosωt−mωy1 sinωt

x2 = y2 cosωt + 1
mωq2 sinωt

p2 = q2 cosωt−mωy2 sinωt




in the limit u ↓ 0

and each transformation serves to map orbits 
→ orbits. But the principal
lesson appears to be that finitistic analysis is not the language of choice if
one’s objective is to render transparent the underlying group theory . We have
gained new appreciation of the force of Sophus Lie’s fundamental insight: to see
what’s going on one should—as at (28)—look to the algebra of the generators
of the transformations.

And yet. . . I have many times advanced the proposition that “to know
the two-point action S(xxx, t;yyy, 0) is to know everything,” while by Noether we
are encouraged to suppose that (consistently with the preceding proposition)
“conservation laws arise from and refer to symmetries of the action.” We may
therefore imagine ourselves to be in position to demonstrate the validity of that
claim as it refers to the isotropic oscillator , and thus to clarify where within
the structure of

S(x1, x2, t ; y1, y2, 0) = mω
2 sinωt

{
(x2

1 + x2
1 + y2

1 + y2
2) cosωt− 2(x1y1 + x2y2)

}
lurks the celebrated O(3)-symmetry of the isotropic oscillator. The effort to do
so meets, however, with only limited success, and exposes a deep but seldom
remarked fact:

Hidden symmetry eludes Noether’s principle. At the top of the preceding page
we obtained a description of the compose (same in either order) of the canonical
transformations generated by H and A1. Mathematica informs us that

S
(
x1(t, u), x2(t, u), t ;x1(0, u), x2(0, u), 0

)
− S

(
x1(t, 0), x2(t, 0), t ;x1(0, 0), x2(0, 0), 0

)
= non-vanishing mess

A similar result is obtained when we work from the description (middle of the
page) of the canonical transformations generated by H and A3. But when we
work from the description (bottom of the page) of the canonical transformations
generated by H and A2 we find that indeed

S
(
x1(t, u), x2(t, u), t ;x1(0, u), x2(0, u), 0

)
− S

(
x1(t, 0), x2(t, 0), t ;x1(0, 0), x2(0, 0), 0

)
= 0

(34)

Noether herself—working within the framework provided by the calculus of
variations—proceeded from a statement of the form

∂
∂uS

(
x1(t, u), x2(t, u), t ;x1(0, u), x2(0, u), 0

)∣∣∣∣
u→0

= 0
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which is correct in this instance, but fails to capture the full force of the
remarkable circumstance that, according to (34),

S
(
x1(t, u), x2(t, u), t ;x1(0, u), x2(0, u), 0

) { is in fact u -independent;
it vanishes under

(
∂
∂u

)n
for all n, at all u

Why do we have “symmetry of the action” in this case, but not in the other
two?

Noether’s principle, as it applies to classical mechanics (as opposed to
classical field theory), gives rise to local conservation laws of the form d

dtJr = 0
with

Jr =
∑
ν

pνΦ
ν
r +

{
L−

∑
ν

pν q̇
ν
}

Xr + Λr : r = 1, 2, . . . , α

where Φν
r , Xr and Λr are structure functions that serve to describe some

δωr-parameterized map that acts on
{
qqq, t

}
-space, but may contain also a gauge

component.25 In Hamiltonian language we have

Jr(p, q, t) =
∑
ν

pνΦ
ν
r (q, t)−H(ppp, qqq)Xr(q, t) + Λr(q, t)

into which momenta enter linearly , except for such non-linear p -dependence as
may be incorporated into the design of H(ppp, qqq).26

Look back now to (27.2) and notice that

• A2, which we found does generate a symmetry of the
oscillator action S, is linear in the momenta, and therefore
could arise from Noether’s principle; in point of fact,

A2 ∼ angular momentum

which is known to reflect the rotational invariance of S.

• A1 and A3 display such quadratic dependence upon momenta
that they could not have arisen from applications of Noether’s
principle: the statements

d
dtA1 = d

dtA3 = 0

are non-Noetherean conservation laws. And, as we have seen,
A1 and A3 generate transformations which are not symmetries
of S; i.e., with respect to which S is not invariant.

25 See classical mechanics (), page 169.
26 See page 18 in “Kepler problem by descent from the Euler problem,” Notes

for a Reed College Physics Seminar ( October ), where the same point
comes up in another context.
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We are brought thus to this insight: “Hidden symmetries” live in phase space,
not in configuration space, where they would become susceptible to Noetherean
analysis. Hidden symmetries give rise to what it now becomes natural to
call “non-Noetherean conservation laws.” Maybe it is possible to devise an
“extended Noether’s principle” which would embrace such conservation laws,
but until that has been accomplished it seems important to recognize the
existence of such things.27

Quantum mechanical expression of the Noetherean/non-Noetherean
distinction requires at the very least that one adopt a formalism within which
Noether’s principle is a player. The obvious thing to do is to look upon quantum
mechanics as a classical field theory, which in the case of immediate interest
(isotropic oscillator) proceeds from the Lagrange density28

L = − �
2

2m

{
∂ψ∗

∂x1

∂ψ
∂x1

+ ∂ψ∗

∂x2

∂ψ
∂x2

}
− ψ∗

{
1
2mω2

(
x2

1 + x2
2

)}
ψ + 1

2 i�
(
ψ∗ψt − ψ∗

tψ
)

but alternative launch pads would appear to be provided by Schwinger’s
variational principle and by a little known but lovely formalism devised by
E. T. Whittaker in the early ’s.29 The topic merits closer study, but this
is not the occasion; for the moment it is sufficient to observe that

It is futile to search for evidence of hidden symmetry written
into the design of the quantum mechanical Green’s function; it
is in precisely that sense that such symmetry is “hidden.”

Note, however, that in the phase space formalism

ψ(xxx, t) =
∫∫

G(xxx, t ;yyy, 0)ψ(yyy, 0)dy1dy2

becomes30

P (xxx, ppp, t) =
∫∫∫∫

K(xxx, ppp, t ;yyy, qqq, 0)P (yyy, qqq, 0)dy1dy2dq1dq2

and that it just might be sensible to search for evidence of hidden symmetry in
the design of the “phase space propagator” K(xxx, ppp, t ;yyy, qqq, 0). As a preliminary
step one might want to expose the classical counterpart to K—the object
S(xxx, ppp, t ;yyy, qqq, 0) that stands to K as S(xxx, t ;yyy, 0) stands to G(xxx, t ;yyy, 0). Note
also that upon elimination of the t-variable the classical theory of isotropic

27 Preceding remarks contribute nothing toward clarification of the relation
between hidden symmetry and multiple separability . See page 9 in “Classical/
quantum theory of 2-dimensional hydrogen,” Notes for a Reed College Physics
Seminar ( February ).

28 See classical field theory (), p.130.
29 See quantum mechanics (), Chapter 3, pp. 68–83.
30 See page 113 in the notes just cited, or page 18 in advanced quantum

topics, Chapter 2, “Weyl transform and the phase space formalism” ().
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oscillators becomes a “theory of centered ellipses,” which A1,2,3 serve to map
one to another in a manner elegantly described by Stokes and Poincaré, and
elaborately reviewed in my ellipsometry (); one might expect that
formalism to be latent in the design of K(xxx, ppp, t ;yyy, qqq, 0), but to be eclipsed
by the process that proceeds K → G.

A small point concerning “equivalent but gauge-inequivalent” Lagrangians. At
(29.2) we were led from A1(x1, x2, p1, p2) to a “Lagrangian” of the form

B1(x1, x2, ẋ1, ẋ2) = m
{
ẋ1ẋ2 − ω2x1x2

}
which gives

ẍ2 + ω2x2 = 0

ẍ1 + ω2x1 = 0

At (31.2) we were led similarly from A3(x1, x2, p1, p2) to a “Lagrangian”

B3(x1, x2, ẋ1, ẋ2) = 1
2m(ẋ2

1 − ẋ2
2) + 1

2mω2(x2
1 − x2

2)

which (i) is evidently not gauge-equivalent to B1

B3 cannot be written B1 + d
dtΛ(x1, x2)

though (ii) it leads to the same system of differential equations

ẍ1 + ω2x1 = 0

ẍ2 + ω2x2 = 0

but a system in which the members are presented in reversed order . The small
point to which I draw attention is that “gauge equivalence” and—what to call
it?—“plain equivalence” are, on this evidence, distinct concepts.

Conclusions. In my introductory remarks I drew attention to common features
shared by “Jacobi’s theta transformation” and “Mehler’s formula” asked (not
for the first time in my career): Does there exist a sense in which all such
statements are instances of the same over-arching abstract statement? Can
such statements be unified/generalized? The short answer: Beats me! We have
seen that the former is a discrete analog of, and the latter a corollary of . . . the
elementary Gaussian identity (1.2), which in the multivariate case reads (12).
In that sense we have established “commonality,” but unification/generalization
have eluded us.

I remarked also that “a bivariate [version of Mehler’s formula] stands
central to the quantum theory of the . . . isotropic 2-dimensional oscillator” and
speculated that it “must, therefore, lurk somewhere within the quantum theory
of angular momentum.” The discussion has established that O(3) lurks in a
truly well-hidden place (phase space); that it is futile to attempt to read O(3)
in the design (Mehler’s design) of the oscillator propagator.


